
datapilot-cli
Release 0.0.10

Altimate Inc.

Apr 21, 2024

CONTENTS

1 Overview 1
1.1 Installation . 1
1.2 Documentation . 1
1.3 Development . 2

2 Introduction to DataPilot 3
2.1 What is DataPilot? . 3
2.2 Key Features . 3
2.3 How DataPilot Works . 3

3 Installation 5
3.1 Prerequisites . 5
3.2 Installation . 5
3.3 QuickStart . 5

4 dbt 7
4.1 project-health . 7

5 Insights 9
5.1 1. Modelling Insights . 11
5.2 2. Performance Insights . 12
5.3 3. Governance Insights . 13
5.4 4. Testing Insights . 14
5.5 5. Project Structure Insights . 16
5.6 6. Check Insights . 18

6 Performance of Pre-commit Hook 19
6.1 Overview . 19
6.2 Optimizations . 19
6.3 Timing Results for the_tuva_project . 19
6.4 Conclusion . 20

7 Advanced Usage 21
7.1 Project Health Configuration . 21
7.2 Key Sections of the config file . 22
7.3 Overriding default configs for the insights . 22

8 Contributing 23
8.1 Bug reports . 23
8.2 Documentation improvements . 23
8.3 Feature requests and feedback . 23

i

8.4 Development . 24

9 Authors 25

10 Changelog 27
10.1 0.0.0 (2024-01-25) . 27

ii

CHAPTER

ONE

OVERVIEW

docs
tests

|scrutinizer|

package

0.0.10 |wheel| |supported-versions|
|supported-implementations|
|commits-since|

Assistant for Data Teams

• Free software: MIT license

1.1 Installation

pip install altimate-datapilot-cli

You can also install the in-development version with:

pip install https://github.com/AltimateAI/datapilot-cli/archive/main.zip

1.2 Documentation

https://datapilot.readthedocs.io/

1

https://datapilot.readthedocs.io/
https://github.com/AltimateAI/datapilot/actions
https://app.codecov.io/github/anandgupta42/datapilot
https://datapilot.readthedocs.io/

datapilot-cli, Release 0.0.10

1.3 Development

To run all the tests run:

tox

Note, to combine the coverage data from all the tox environments run:

Win-
dows set PYTEST_ADDOPTS=--cov-append

tox

Other
PYTEST_ADDOPTS=--cov-append tox

2 Chapter 1. Overview

CHAPTER

TWO

INTRODUCTION TO DATAPILOT

2.1 What is DataPilot?

DataPilot is an innovative tool designed to be an AI-powered assistant for data engineers and analysts working with
SQL and dbt (data build tool). It integrates seamlessly into the development environment, providing real-time insights
and suggestions to uphold best practices and enhance the quality of data projects.

With DataPilot, teams can automate the review process for their SQL queries and dbt models, ensuring that their data
transformations are efficient, well-documented, and maintainable. It also facilitates organization-wide consistency by
enforcing project standards through integration with version control systems and continuous integration/continuous
deployment (CI/CD) pipelines.

2.2 Key Features

DataPilot comes with a host of features aimed at improving data project management:

• Insightful Analysis: DataPilot performs in-depth analysis of SQL code and dbt projects, highlighting areas of
concern such as model fanouts, hard-coded references, and potential duplications.

• Seamless Integration: It can be easily integrated into local development environments as well as Git workflows
and CI/CD pipelines, making it a versatile tool for teams of all sizes.

• Early Detection: By identifying potential issues early in the development cycle, DataPilot helps prevent costly
and time-consuming fixes down the line.

• Best Practice Enforcement: DataPilot encourages the adoption of best practices in SQL and dbt project devel-
opment, aiding in the maintenance of high-quality data models.

• Automated Checks: The tool includes a range of automated checks for detecting unused sources, ensuring
dependency integrity, and encouraging comprehensive testing and documentation.

2.3 How DataPilot Works

DataPilot operates by scanning your SQL and dbt project files, identifying patterns and structures that indicate potential
problems or deviations from best practices. Once an issue is detected, it provides feedback and recommendations on
how to address it.

For dbt projects, DataPilot makes use of the manifest and catalog files generated by dbt to perform its analysis. This
ensures that the insights provided are based on the most up-to-date view of your project’s state.

3

datapilot-cli, Release 0.0.10

4 Chapter 2. Introduction to DataPilot

CHAPTER

THREE

INSTALLATION

3.1 Prerequisites

Before installing DataPilot, ensure you have the following prerequisites met:

• Python 3.7 or higher installed on your machine.

• Access to a command-line interface (CLI) to execute pip commands.

• An existing dbt project to analyze with DataPilot.

3.2 Installation

To install DataPilot, open your CLI and run the following command:

pip install altimate-datapilot-cli

This command will download and install the latest version of DataPilot along with its dependencies.

3.3 QuickStart

Once DataPilot is installed, you can set it up to work with your dbt project.

Execute the following command to perform a health check on your dbt project:

datapilot dbt project-health --manifest-path /path/to/manifest.json --catalog-path /path/
→˓to/catalog.json

After running the command, DataPilot will provide you with insights into your dbt project’s health. Review the insights
and make any necessary adjustments to your project.

5

datapilot-cli, Release 0.0.10

6 Chapter 3. Installation

CHAPTER

FOUR

DBT

4.1 project-health

The project-health feature in DataPilot is a comprehensive tool designed to analyze and report on various aspects
of your dbt project. This feature is currently supported for dbt version 1.6 and 1.7.

4.1.1 How to Use

To use the project-health feature, run the following command in your dbt project directory:

Step 1: Generate a manifest file for your dbt project.

dbt compile

This command will generate a manifest file for your dbt project under the configured target directory. The default
location for this directory is target/manifest.json.

Step 2: Generate a catalog file for your dbt project.

dbt docs generate

This command will generate a catalog file for your dbt project under the configured target directory. The default
location for this directory is target/catalog.json.

Step 3: Run the project-health command.

datapilot dbt project-health --manifest-path ./target/manifest.json --catalog-path ./
→˓target/catalog.json

The catalog path is optional. If you do not provide a catalog path, the command will still run, but the catalog-related
insights will not be available.

You can also select specific list of models to run the health check on by providing the ‘–select’ flag. For example:

datapilot dbt project-health --manifest-path ./target/manifest.json --select "path:dir1␣
→˓path:dir2 model1 model2"

This will run the health check on all the models in the ‘dir1’ and ‘dir2’ directory. It will also run the health check on
the ‘model1’ and ‘model2’ models. As of now, the ‘–select’ flag only supports filtering based on model path and model
name. We will add support for other filters and make it compatible with the dbt comands soon.

7

datapilot-cli, Release 0.0.10

8 Chapter 4. dbt

CHAPTER

FIVE

INSIGHTS

The following insights are available in DataPilot:

9

datapilot-cli, Release 0.0.10

10 Chapter 5. Insights

datapilot-cli, Release 0.0.10

5.1 1. Modelling Insights

Name Description Files Required Overrides
source_staging_model_integrity

Ensures each source has a
dedicated
staging model and is not
directly
joined to downstream
models.

Manifest None

down-
stream_source_dependence

Evaluates if downstream
models
(marts or intermediates)
are improperly
dependent directly on a
source. This
check ensures that all
downstream
models depend on staging
models,
not directly on the source
nodes.

Manifest None

Duplicate_Sources

Identifies cases where
multiple source
nodes in a dbt project
refer to the
same database object.
Ensures that each
database object is
represented by a single,
unique source node.

Manifest None

hard_coded_references

Identifies instances where
SQL code
within models contains
hard-coded references,
which can obscure data
lineage and complicate
project maintenance.

Manifest None

rejoin-
ing_upstream_concepts

Detects scenarios where a
parent’s direct
child is also a direct child
of another
one of the parent’s direct
children, indicating
potential loops or
unnecessary complexity
in the DAG.

Manifest None

model_fanout

Assesses parent models to
identify
high fanout scenarios,
which may
indicate opportunities for
more
efficient transformations
in the
BI layer or better
positioning
of common business logic
upstream
in the data pipeline.

Manifest max_fanout

multiple_sources_joined

Checks if a model directly
joins
multiple source tables,
encouraging
the use of a single staging
model
per source for
downstream models
to enhance data
consistency
and maintainability.

Manifest None

root_model

Identifies models without
direct
parents, either sources or
other
models within the dbt
project.
Ensures all models can be
traced
back to a source or
interconnected
within the project, which
is crucial
for clear data lineage and
project
integrity.

Manifest None

source_fanout

Evaluates sources for high
fanout,
identifying when a single
source
has a large number of
direct child
models. High fanout may
indicate
an overly complex or
source reliant
data model, potentially
introducing
risks and complicating
maintenance
and scalability.

Manifest max_fanout

stag-
ing_models_dependency

Checks whether staging
models depend
on downstream models,
rather than
on source or raw data
models. Staging
models should ideally
depend on
upstream data sources to
maintain
a clear and logical data
flow.

Manifest None

stag-
ing_models_on_staging

Checks if staging models
are dependent
on other staging models
instead of
on source or raw data
models, ensuring
that staging models are
used
appropriately to maintain
a clear
and logical data flow from
sources
to staging.

Manifest None

unused_sources

Identifies sources that are
defined
in the project’s YML files
but not
used in any models or
sources. They
may have become
redundant due to
model deprecation,
contributing to
unnecessary complexity
and clutter
in the dbt project.

Manifest None

5.1. 1. Modelling Insights 11

datapilot-cli, Release 0.0.10

5.2 2. Performance Insights

Name Description Files Required Overrides
chain_view_linking

Analyzes the dbt project
to identify
long chains of non
materialized
models (views and
ephemerals).
Such long chains can
result in increased
runtime for models built
on top of them
due to extended
computation and
memory usage.

Manifest None

expo-
sure_parent_bad_materialization

Evaluates the
materialization types of
parent models of
exposures to ensure
they rely on transformed
dbt models
or metrics rather than raw
sources,
and checks if these parent
models are
materialized efficiently for
performance

Manifest None

12 Chapter 5. Insights

datapilot-cli, Release 0.0.10

5.3 3. Governance Insights

Name Description Files Required Overrides
documenta-
tion_on_stale_columns

Checks for columns that
are documented
in the dbt project but have
been removed
from their respective
models.

Manifest, Catalog None

expo-
sures_dependent_on_private_models

Detects if exposures in the
dbt project
are dependent on private
models. Recommends
using public, well
documented, and
contracted models as
trusted data
sources for downstream
consumption.

Manifest None

pub-
lic_models_without_contracts

Identifies public models
in the dbt project
that are accessible to all
downstream
consumers but lack
contracts specifying
data types and columns.

Manifest None

missing_documentation

Detects columns and
models that don’t
have documentation.

Manifest, Catalog None

undocu-
mented_public_models

Identifies models in the
dbt project
that are marked as public
but don’t
have documentation.

Manifest None

5.3. 3. Governance Insights 13

datapilot-cli, Release 0.0.10

5.4 4. Testing Insights

Name Description Files Required Overrides
miss-
ing_primary_key_tests

Identifies dbt models in
the project
that lack primary key
tests, which are
crucial for ensuring data
integrity
and correctness.

Manifest None

dbt_low_test_coverage

Identifies dbt models in
the project
that have tests coverage
percentage
below the required
threshold.

Manifest min_test_coverage_percent

14 Chapter 5. Insights

datapilot-cli, Release 0.0.10

5.4. 4. Testing Insights 15

datapilot-cli, Release 0.0.10

5.5 5. Project Structure Insights

Name Description Files Required Overrides
model_directory_structure

Checks for correct
placement of models
in their designated
directories. Proper
directory structure is
essential for ,
organization,
discoverability, and
maintenance
within the dbt project.

Manifest None

model_naming_convention_check

Ensures all models adhere
to a predefined
naming convention. A
consistent naming
convention is crucial for
clarity,
understanding of the
model’s purpose, and
enhancing navigation
within the dbt project.

Manifest None

source_directory_structure

Verifies if sources are
correctly placed in
their designated
directories. Proper
directory
placement for sources is
important for
organizationand easy
searchability.

Manifest None

test_directory_structure

Checks if tests are
correctly placed in the
same directories as their
corresponding models.
Co locating tests with
models aids in
maintainability and
clarity.

Manifest None

16 Chapter 5. Insights

datapilot-cli, Release 0.0.10

5.5. 5. Project Structure Insights 17

datapilot-cli, Release 0.0.10

5.6 6. Check Insights

Name Description Files Required Overrides
col-
umn_descriptions_are_same

Checks if the column
descriptions in the dbt
project are consistent
across the project.

Manifest None

column_name_contract

Checks if the column
names in the dbt project
abide by the column name
contract which
consists of a regex pattern
and a series
of data types.

Manifest, Catalog None

check_macro_args_have_desc

Checks if the macro
arguments in the dbt
project have descriptions.

Manifest None

check_macro_has_desc

Checks if the macros in
the dbt project
have descriptions.

Manifest None

check_model_has_all_columns

Checks if the models in
the dbt project
have all the columns that
are present in
the data catalog.

Manifest, Catalog None

check_model_has_valid_meta_keys

Checks if the models in
the dbt project
have meta keys.

Manifest None

check_model_has_properties_file

Checks if the models in
the dbt project
have a properties file.

Manifest None

check_model_has_tests_by_name

Checks if the models in
the dbt project
have tests by name.

Manifest None

check_model_has_tests_by_type

Checks if the models in
the dbt project
have tests by type.

Manifest None

check_model_has_tests_by_group

Checks if the models in
the dbt project
have tests by group.

Manifest None

check_model_materialization_by_childs

Checks if the models in
the dbt project
have materialization by a
given threshold
of child models.

Manifest None

model_name_by_folder

Checks if the models in
the dbt project
abide by the model name
contract which
consists of a regex pattern.

Manifest None

check_model_parents_and_childs

Checks if the model has
min/max parents
and childs.

Manifest None

check_model_parents_database

Checks if the models in
the dbt project
has parent database in
whitelist and
not in blacklist.

Manifest None

check_model_parents_schema

Checks if the models in
the dbt project
has parent schema in
whitelist and
not in blacklist.

Manifest None

check_model_tags

Checks if the models in
the dbt project
have tags in provided list
of tags.

Manifest None

check_source_childs

Checks if the source has
min/max childs

Manifest None

check_source_columns_have_desc

Checks if the source
columns have descriptions
in the dbt project.

Manifest, Catalog None

check_source_has_all_columns

Checks if the source has
all columns
present in the data
catalog.

Manifest, Catalog None

check_source_has_freshness

Checks if the source has
freshness
options.

Manifest None

check_source_has_loader

Checks if the source has
loader

Manifest None

check_source_has_meta_keys

Checks if the source has
meta keys

Manifest None

check_source_has_tests_by_name

Checks if the source has
tests by name

Manifest None

check_source_has_tests_by_type

Checks if the source has
tests by type

Manifest None

check_source_has_tests_by_group

Checks if the source has
tests by group

Manifest None

check_source_has_tests

Checks if the source has
tests

Manifest None

check_source_table_has_desc

Checks if the source table
has description

Manifest None

check_source_tags

Checks if the source has
tags

Manifest None

18 Chapter 5. Insights

CHAPTER

SIX

PERFORMANCE OF PRE-COMMIT HOOK

6.1 Overview

The primary objective is to ensure the pre-commit hook operates swiftly and efficiently, preventing any delay in the
development workflow. To achieve this, various optimizations have been applied, focusing on minimizing the time and
resources required during execution.

6.2 Optimizations

1. Partial Catalog Fetching: Instead of retrieving the entire catalog schema, the pre-commit hook is optimized to
fetch only the schema of the files being committed. This approach significantly reduces the fetching time and the
amount of data processed.

2. Cost-effective Commands: The hook utilizes commands that avoid activating the warehouses in Snowflake,
enhancing cost effectiveness. Specifically, it avoids the use of dbt docs generate, which retrieves columns from
the information schema and requires warehouse activation, thereby incurring higher costs.

6.3 Timing Results for the_tuva_project

The following timing results illustrate the efficiency of the pre-commit hook across different scenarios, with varying
numbers of files changed in the commit:

• 1 file changed: - DataPilot: 15 seconds - Checkpoint: 60 seconds

• 5 files changed: - DataPilot: 16 seconds - Checkpoint: 54 seconds

• 10 files changed: - DataPilot: 19 seconds - Checkpoint: 54 seconds

• 15 files changed: - DataPilot: 24 seconds - Checkpoint: 45 seconds

• 20 files changed: - DataPilot: 19 seconds - Checkpoint: 56 seconds

• Check on all files (309 files): - DataPilot: 42 seconds - Checkpoint: 71 seconds

19

datapilot-cli, Release 0.0.10

6.4 Conclusion

The optimized pre-commit hook demonstrates a consistent performance improvement, effectively balancing the speed
of development against the necessity of maintaining code quality and cost efficiency.

20 Chapter 6. Performance of Pre-commit Hook

CHAPTER

SEVEN

ADVANCED USAGE

7.1 Project Health Configuration

You can configure the project health settings by providing a configuration file. The configuration file is a YAML file
that contains the following fields:

version: v1

Insights to disable
disabled_insights:
- source_staging_model_integrity
- downstream_source_dependence
- Duplicate_Sources
- hard_coded_references
- rejoining_upstream_concepts
- model_fanout
- multiple_sources_joined

Define patterns to identify different types of models
model_type_patterns:
staging: "^stg_.*" # Regex for staging models
mart: "^(mrt_|mart_|fct_|dim_).*" # Regex for mart models
intermediate: "^int_.*" # Regex for intermediate models
base: "^base_.*" # Regex for base models

Configure insights
insights:
Set minimum test coverage percent and severity for 'Low Test Coverage in DBT Models'
dbt_low_test_coverage:
min_test_coverage_percent: 30
severity: WARNING

Configure maximum fanout for 'Model Fanout Analysis'
model_fanout.max_fanout: 10

Configure maximum fanout for 'Source Fanout Analysis'
source_fanout.max_fanout: 10

Define model types considered as downstream for 'Staging Models Dependency Check'
staging_models_dependency.downstream_model_types:
- mart

21

datapilot-cli, Release 0.0.10

7.2 Key Sections of the config file

• disabled_insights: Insights that you want to disable

• model_type_patterns: Regex patterns to identify different model types like staging, mart, etc.

• insights: Custom configurations for each insight. For each insight, you can set specific thresholds, severity levels,
or other parameters.

Severity can have 3 values -> INFO, WARNING, ERROR

7.3 Overriding default configs for the insights

To change the severity level or set a threshold, modify the corresponding insight under the insights section. For example:

insights:
dbt_low_test_coverage:
severity: WARNING

For insights with more complex configurations (like fanout thresholds or model types), you need to specify the insight
name and corresponding parameter under insights. For example:

insights:
model_fanout.max_fanout: 10

22 Chapter 7. Advanced Usage

CHAPTER

EIGHT

CONTRIBUTING

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

8.1 Bug reports

When reporting a bug please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

8.2 Documentation improvements

datapilot could always use more documentation, whether as part of the official datapilot docs, in docstrings, or even on
the web in blog posts, articles, and such.

8.3 Feature requests and feedback

The best way to send feedback is to file an issue at https://github.com/AltimateAI/datapilot/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that code contributions are welcome :)

23

https://github.com/AltimateAI/datapilot/issues
https://github.com/AltimateAI/datapilot/issues

datapilot-cli, Release 0.0.10

8.4 Development

To set up datapilot for local development:

1. Fork datapilot (look for the “Fork” button).

2. Clone your fork locally:

git clone git@github.com:YOURGITHUBNAME/datapilot.git

3. Create a branch for local development:

git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

4. When you’re done making changes run all the checks and docs builder with one command:

tox

5. Commit your changes and push your branch to GitHub:

git add .
git commit -m "Your detailed description of your changes."
git push origin name-of-your-bugfix-or-feature

6. Submit a pull request through the GitHub website.

8.4.1 Pull Request Guidelines

If you need some code review or feedback while you’re developing the code just make the pull request.

For merging, you should:

1. Include passing tests (run tox).

2. Update documentation when there’s new API, functionality etc.

3. Add a note to CHANGELOG.rst about the changes.

4. Add yourself to AUTHORS.rst.

8.4.2 Tips

To run a subset of tests:

tox -e envname -- pytest -k test_myfeature

To run all the test environments in parallel:

tox -p auto

24 Chapter 8. Contributing

https://github.com/AltimateAI/datapilot-cli

CHAPTER

NINE

AUTHORS

• Anand Gupta - www.altimate.ai

25

datapilot-cli, Release 0.0.10

26 Chapter 9. Authors

CHAPTER

TEN

CHANGELOG

10.1 0.0.0 (2024-01-25)

• First release on PyPI.

27

	Overview
	Installation
	Documentation
	Development

	Introduction to DataPilot
	What is DataPilot?
	Key Features
	How DataPilot Works

	Installation
	Prerequisites
	Installation
	QuickStart

	dbt
	project-health
	How to Use

	Insights
	1. Modelling Insights
	2. Performance Insights
	3. Governance Insights
	4. Testing Insights
	5. Project Structure Insights
	6. Check Insights

	Performance of Pre-commit Hook
	Overview
	Optimizations
	Timing Results for the_tuva_project
	Conclusion

	Advanced Usage
	Project Health Configuration
	Key Sections of the config file
	Overriding default configs for the insights

	Contributing
	Bug reports
	Documentation improvements
	Feature requests and feedback
	Development
	Pull Request Guidelines
	Tips

	Authors
	Changelog
	0.0.0 (2024-01-25)

